479 research outputs found

    Scintillators and Cherenkov detectors for the registration of 10.8 MeV gamma rays

    Get PDF
    © Published under licence by IOP Publishing Ltd. The identification of nitrogen by neutron activation has been utilized in both explosive detection and in-vivo metabolic analysis. The 10.8 MeV gamma ray line emitted by thermal neutron capture provides a unique signature, however, due to its high energy its registration is non-trivial. Conventional approaches have used large dense inorganic scintillators which inevitably entail considerable expense. We examine the capabilities of arrays of smaller scintillation detectors and the use of glass Cherenkov detectors as an alternative

    Estimation of the Optimal Statistical Quality Control Sampling Time Intervals Using a Residual Risk Measure

    Get PDF
    Background: An open problem in clinical chemistry is the estimation of the optimal sampling time intervals for the application of statistical quality control (QC) procedures that are based on the measurement of control materials. This is a probabilistic risk assessment problem that requires reliability analysis of the analytical system, and the estimation of the risk caused by the measurement error. Methodology/Principal Findings: Assuming that the states of the analytical system are the reliability state, the maintenance state, the critical-failure modes and their combinations, we can define risk functions based on the mean time of the states, their measurement error and the medically acceptable measurement error. Consequently, a residual risk measure rr can be defined for each sampling time interval. The rr depends on the state probability vectors of the analytical system, the state transition probability matrices before and after each application of the QC procedure and the state mean time matrices. As optimal sampling time intervals can be defined those minimizing a QC related cost measure while the rr is acceptable. I developed an algorithm that estimates the rr for any QC sampling time interval of a QC procedure applied to analytical systems with an arbitrary number of critical-failure modes, assuming any failure time and measurement error probability density function for each mode. Furthermore, given the acceptable rr, it can estimate the optimal QC sampling time intervals

    D6.3 Intermediate system evaluation results

    Full text link
    The overall purpose of METIS is to develop a 5G system concept that fulfil s the requirements of the beyond-2020 connected information society and to extend today’s wireless communication systems for new usage cases. First, in this deliverable an updated view on the overall METIS 5G system concept is presented. Thereafter, simulation results for the most promising technology components supporting the METIS 5G system concept are reported. Finally, s imulation results are presented for one relevant aspect of each Horizontal Topic: Direct Device - to - Device Communication, Massive Machine Communication, Moving Networks, Ultra - Dense Networks, and Ultra - Reliable Communication.Popovski, P.; Mange, G.; Fertl, P.; Gozálvez - Serrano, D.; Droste, H.; Bayer, N.; Roos, A.... (2014). D6.3 Intermediate system evaluation results. http://hdl.handle.net/10251/7676

    Modelling of the effect of ELMs on fuel retention at the bulk W divertor of JET

    Get PDF
    Effect of ELMs on fuel retention at the bulk W target of JET ITER-Like Wall was studied with multi-scale calculations. Plasma input parameters were taken from ELMy H-mode plasma experiment. The energetic intra-ELM fuel particles get implanted and create near-surface defects up to depths of few tens of nm, which act as the main fuel trapping sites during ELMs. Clustering of implantation-induced vacancies were found to take place. The incoming flux of inter-ELM plasma particles increases the different filling levels of trapped fuel in defects. The temperature increase of the W target during the pulse increases the fuel detrapping rate. The inter-ELM fuel particle flux refills the partially emptied trapping sites and fills new sites. This leads to a competing effect on the retention and release rates of the implanted particles. At high temperatures the main retention appeared in larger vacancy clusters due to increased clustering rate

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    ITER oriented neutronics benchmark experiments on neutron streaming and shutdown dose rate at JET

    Get PDF
    Neutronics benchmark experiments are conducted at JET in the frame of WPJET3 NEXP within EUROfusion Consortium for validating the neutronics codes and tools used in ITER nuclear analyses to predict quantities such as the neutron flux along streaming paths and dose rates at the shutdown due to activated components. The preparation of neutron streaming and shutdown dose rate experiments for the future Deuterium-Tritium operations (DTE2 campaign) are in progress. This paper summarizes the status of measurements and analyses in progress in the current Deuterium–Deuterium (DD) campaign and the efforts in preparation for DTE2

    Overview of the JET ITER-like wall divertor

    Get PDF

    Power exhaust by SOL and pedestal radiation at ASDEX Upgrade and JET

    Get PDF
    • …
    corecore